Contribution of mantle plumes, crustal thickening and greenstone blanketing to the 2.75–2.65 Ga global crisis
نویسندگان
چکیده
Assuming that the period 2.75–2.65 Ga corresponds to a single, but global, geodynamic event, we investigate—through numerical experiments—the mechanisms that could have led to the profound continental reworking that occurred at that time. Although the extent of the crisis at the Earth’s surface pledges in favour of the involvement of mantle plumes, our numerical experiments suggest that the thermal impact of mantle plumes is unlikely to explain both the amplitude and timing of the thermal anomaly, as observed in the Superior Province (Canada) and the Yilgarn Craton (Australia). Similarly, moderate crustal thickening can not lead to significant reworking of the continental crust within the observed time constraint. Crustal thickening with a factor ≥1.5 is also unlikely because it is not consistent with the moderate metamorphic grade observed at the surface of many Archaean cratons. Burial of a radiogenic crust under a 10 km thick greenstone cover also falls short of explaining, not so much the amplitude and the extent, but the timing of the thermal anomaly. In contrast, the combination of the thermal anomaly related to the greenstone blanketing effect with the heat transfer from a plume head spreading at the top of the thermal boundary layer can adequately explain the amplitude, the timing, and the extent of the 2.75–2.65 Ga crisis. Our favoured model involves a global rearrangement of convection cells in the deep mantle and formation of multiple mantle plumes. The greenstones emplaced at the surface and the plumes that spread in the thermal boundary layer contributed to heat the crust from both above and below. This produced massive crustal partial melting that reached its climax ca. 40 Myr after the emplacement of the plumes and associated greenstone cover rocks. This led to gravitational instabilities in the crust, as dense greenstone cover rocks began to sink into the thermally softened crust and granite domes rose in response. The extraction of heat-producing elements toward the upper part of the crust has contributed to the cooling and stabilisation of the cratons. This succession of events, which is not incompatible with plate-tectonic processes, may have profoundly changed the nature of the crust exposed at the surface and could explain the contrasting geochemical signatures of Archaean and post-Archaean shales. © 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Thermal evolution of Venus with argon degassing
Decades-old measurements of atmospheric and elemental surface composition constrain the history of Venus. In this study, we search for a model featuring continuous evolution in the stagnant-lid regime that predicts the present-day atmospheric mass of radiogenic argon and satisfies the other available constraints. For comparison, we also consider the end-member scenario of a single catastrophic ...
متن کاملThree-dimensional mantle convection with continental crust: first-generation numerical simulations
The potential effects of continental crust on mantle convection are explored using threedimensional numerical simulations. The simulations model the coupling between a thin, deformable layer of chemically buoyant crust and a deep layer of thermally convecting and chemically dense mantle. Simulations begin with a crustal layer embedded within the upper thermal boundary layer of a mantle convecti...
متن کاملTessera terrain and crustal plateaus , Venus
Many workers assume that tessera terrain—marked by multiple tectonic lineaments and exposed in crustal plateaus—comprises a global “onion skin” on Venus. A growing body of structural, mechanical, magmatic, gravitational-topographic, and geologic evidence indicates that tesserae record the local interaction of individual deep-mantle plumes with an ancient, globally thin Venusian lithosphere, res...
متن کاملGeological Evolution of Venus: Rises, Plains, Plumes, and Plateaus
Crustal plateaus and volcanic rises, major physiographic features on Venus, both formed over mantle plumes. Crustal plateaus were produced by large degrees of plume melting beneath thin lithosphere. The oldest tectonic features in crustal plateaus are ribbon-like troughs indicating early uplift and tensile stretching; their shallow depths suggest that surface temperature there was higher in the...
متن کاملThe role of magmatically driven lithospheric thickening on arc front migration
Volcanic activity at convergent plate margins is localized along lineaments of active volcanoes that focus rising magma generated within the mantle below. In many arcs worldwide, particularly continental arcs, the volcanic front migrates away from the interface of subduction (the trench) over millions of years, reflecting coevolving surface forcing, tectonics, crustal magma transport, and mantl...
متن کامل